$theta$-regularity in spaces with more topologies
Result description
The term {it space} $(X,tau,sigma,rho)$ is referred as a set $X$ with three, generally non-identical topologies $tau$, $sigma$ and $rho$. We say that $xin X$ is a {it $(sigma, rho)$-$theta$-cluster point} of a filter base $Phi$ in $X$ if forevery $Vinsigma$ such that $xin V$ and every $FinPhi$ the intersection $Fcapcl_rho V$ is non-empty. If $Phi$ has a cluster point with respect to the topology $tau$, we say that has a {it $tau$-cluster point}. medskip parindentt=0pt {bf Definition 1.} We say that a space $X$ is said to be {it(countably) $(tau,sigma,rho)$-$theta$-regular} if every (countable) $tau$-closed filter base $Phi$ with a $(sigma,rho)$-$theta$-cluster point has a $tau$-cluster point. medskip {bf Theorem A.} {sl Let $X$ be the product (sum) space for the family $left{X_iota |iotain Iright}$ of $(tau_iota,sigma_iota,rho_iota)$-$theta$-regular spaces $X_iota$ with the corresponding product (sum) t
Keywords
More topologies on a set$theta$-regularitypairwise paracompactness
The result's identifiers
Result code in IS VaVaI
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
$theta$-regularity in spaces with more topologies
Original language description
The term {it space} $(X,tau,sigma,rho)$ is referred as a set $X$ with three, generally non-identical topologies $tau$, $sigma$ and $rho$. We say that $xin X$ is a {it $(sigma, rho)$-$theta$-cluster point} of a filter base $Phi$ in $X$ if forevery $Vinsigma$ such that $xin V$ and every $FinPhi$ the intersection $Fcapcl_rho V$ is non-empty. If $Phi$ has a cluster point with respect to the topology $tau$, we say that has a {it $tau$-cluster point}. medskip parindentt=0pt {bf Definition 1.} We say that a space $X$ is said to be {it(countably) $(tau,sigma,rho)$-$theta$-regular} if every (countable) $tau$-closed filter base $Phi$ with a $(sigma,rho)$-$theta$-cluster point has a $tau$-cluster point. medskip {bf Theorem A.} {sl Let $X$ be the product (sum) space for the family $left{X_iota |iotain Iright}$ of $(tau_iota,sigma_iota,rho_iota)$-$theta$-regular spaces $X_iota$ with the corresponding product (sum) t
Czech name
$theta$-regularita v prostorech s více topologiemi
Czech description
V práci zkoumáme modifikaci $theta$-regularity pro prostory s několika (dvěma a více) topologiemi. Důsledkem jsou některé zajímavé bitopologické pokrývací vlastnosti a modifikace parakompaktnosti.
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
GA201/97/0216: Mappings and covering properties of topological structures
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
III Congreso Iberoamericano De Topologia Y Sus Aplicaciones
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
1
Pages from-to
65-65
Publisher name
Escuela Universitaria de Gandia
Place of publication
—
Event location
Gandia
Event date
Apr 7, 1999
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—
Basic information
Result type
D - Article in proceedings
CEP
BA - General mathematics
Year of implementation
1999