All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note to classes of mutual comapctificability II

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F98%3APU22659" target="_blank" >RIV/00216305:26220/98:PU22659 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note to classes of mutual comapctificability II

  • Original language description

    This contribution partly completes my talk presented on Prague Topological Symposium in 1996. mezerka comment A topological space $X$ is said to be {it $theta$-regular} cite{Ja} if every filter base in $X$ with a $theta$-cluster point has a clusterpoint. In Hausdorff spaces, $theta$-regularity coincides with regularity. %A topological space is said to be ({it strongly}) {it locally compact} %if every $xin X$ has a compact (closed) neighborhood. Compactness is regarded without anny separation axiom. endcomment definition{Definition 1} Let $X$, $Y$ be topological spaces with $Xcap Y=varnothing$. The space $X$ is said to be {it compactificable} by the space $Y$ or, in other words, $X$, $Y$ are called {it mutually compactificable} if thereexists a compact topology extending the topologies of $X$ and $Y$ to the union $K=Xcup Y$ such that any two points $xin X$, $yin Y$ have disjoint neighborhoods in $K$. If, in addition, the topology on $K$ can be Hausdorff, w

  • Czech name

    Poznámka k vzájemné kompaktifikovatelnosti II

  • Czech description

    Různé nekompaktní topologické prostory mají různý stupeň "nekompaktnosti". V této práci zkoumáme schopnost topologického prostoru X vytvořit s jiným, disjunktním topologickým prostorem Y kompaktní prostor, v němž dva různé body z nichž jeden leží v X a druhý v Y mají disjunktní okolí.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F97%2F0216" target="_blank" >GA201/97/0216: Mappings and covering properties of topological structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    1998

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Abstarcts of the Topology Conference in Gyula

  • ISBN

  • ISSN

  • e-ISSN

  • Number of pages

    1

  • Pages from-to

    20-20

  • Publisher name

    János Bolyai Mathematical Society

  • Place of publication

  • Event location

    Gyula

  • Event date

    Aug 9, 1998

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article