All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Mutual Compactificability and Compactificability Classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F96%3APU22433" target="_blank" >RIV/00216305:26220/96:PU22433 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Mutual Compactificability and Compactificability Classes

  • Original language description

    abstract Conceived intuitively, various topological spaces undoubtedly have different degrees of ``compactness'' or ``non-compactness''. But how to practically determine whether some space is more non-compact than the other? In this work the maincriterion of the ``level of non-compactness'' of a topological space $X$ is its ability to form, together with another space $Y$, a compact space $K=Xcup Y$ such that the points of $X$ are in $K$ separated from the points of $Y$ by disjoint open nei ighbourhoods. Noticing that the existence of such topology on $K$ implies $theta$-regularity of both $X$ and $Y$, at the background of these considerations lies the idea to imagine the compact space as a box of bricks or jigsaw puzzle where ``bricks'' or ``pieces'' are certain $theta$-regular spaces. The principal problem is which ``pieces'' are so compatible that they together can create some compact space. For simplicity, accepting the jigsaw model, in this work we will deal with puzzles

  • Czech name

    Vzájemná kompaktifikovatelnost a třídy vzájemné kompaktifikovatelnosti.

  • Czech description

    Intuitivně chápáno, různé nekompaktní topologické prostory mají různý stupeň "nekompaktnosti". V této práci zkoumáme schopnost topologického prostoru X vytvořit s jiným, disjunktním topologickým prostorem Y kompaktní prostor, v němž dva různé body z nichž jeden leží v X a druhý v Y mají disjunktní okolí.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F97%2F0216" target="_blank" >GA201/97/0216: Mappings and covering properties of topological structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    1996

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Eighth Prague Topological Symposium

  • ISBN

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    173-177

  • Publisher name

    Topology Atlas

  • Place of publication

  • Event location

    Praha

  • Event date

    Aug 19, 1996

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article