On Mutual Compactificability and Compactificability Classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F96%3APU22433" target="_blank" >RIV/00216305:26220/96:PU22433 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Mutual Compactificability and Compactificability Classes
Original language description
abstract Conceived intuitively, various topological spaces undoubtedly have different degrees of ``compactness'' or ``non-compactness''. But how to practically determine whether some space is more non-compact than the other? In this work the maincriterion of the ``level of non-compactness'' of a topological space $X$ is its ability to form, together with another space $Y$, a compact space $K=Xcup Y$ such that the points of $X$ are in $K$ separated from the points of $Y$ by disjoint open nei ighbourhoods. Noticing that the existence of such topology on $K$ implies $theta$-regularity of both $X$ and $Y$, at the background of these considerations lies the idea to imagine the compact space as a box of bricks or jigsaw puzzle where ``bricks'' or ``pieces'' are certain $theta$-regular spaces. The principal problem is which ``pieces'' are so compatible that they together can create some compact space. For simplicity, accepting the jigsaw model, in this work we will deal with puzzles
Czech name
Vzájemná kompaktifikovatelnost a třídy vzájemné kompaktifikovatelnosti.
Czech description
Intuitivně chápáno, různé nekompaktní topologické prostory mají různý stupeň "nekompaktnosti". V této práci zkoumáme schopnost topologického prostoru X vytvořit s jiným, disjunktním topologickým prostorem Y kompaktní prostor, v němž dva různé body z nichž jeden leží v X a druhý v Y mají disjunktní okolí.
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F97%2F0216" target="_blank" >GA201/97/0216: Mappings and covering properties of topological structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1996
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Eighth Prague Topological Symposium
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
173-177
Publisher name
Topology Atlas
Place of publication
—
Event location
Praha
Event date
Aug 19, 1996
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—