Evolutionary Design of Local Binary Pattern Feature Shapes for Object Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98207" target="_blank" >RIV/00216305:26230/12:PU98207 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evolutionary Design of Local Binary Pattern Feature Shapes for Object Detection
Original language description
This paper deals with the evolutionary design of application specific feature shapes of Local Binary Pattern (LBP) features for object detection in image processing applications. LBP features are very often utilized in image classification systems whichare used for pattern recognition. By using genetic algorithm the application of specific weak classifiers' feature shapes, which are highly optimized to achieve a better accuracy of the AdaBoost strong classifier, are being evolved.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2012 NASA/ESA Adaptive Hardware and Systems (AHS-2012) Conference
ISBN
978-1-4673-1914-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
IEEE Computer Society
Place of publication
Nuremberg
Event location
Nuremberg
Event date
Jun 25, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—