All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F13%3APU106379" target="_blank" >RIV/00216305:26230/13:PU106379 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.fit.vutbr.cz/research/groups/speech/publi/2013/motlicek_icassp2013_0007604.pdf" target="_blank" >http://www.fit.vutbr.cz/research/groups/speech/publi/2013/motlicek_icassp2013_0007604.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task

  • Original language description

    We have demonstrated that the SGMM framework is an efficient approach in the LVCSR task. Overall evaluations of SGMMs exploiting powerful but complex PLP-BN features yield similar results as those obtained by conventional HMM/GMMs. Nevertheless, the total number of SGMM parameters is about 3 times less than in the HMM/GMM framework. Evaluation results also indicate different properties of the examined acoustic modeling techniques. Although SGMMs consistently outperform HMM/GMMs when built over individual features, HMM/GMMs can benefit much more from the feature-level combination than SGMMs. Nevertheless based on an analysis measuring complementarity of individual recognition systems, we show that SGMM-based recognizers produce heterogeneous outputs (scores) and thus subsequent score-level combination can bring additional improvement.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GPP202%2F12%2FP604" target="_blank" >GPP202/12/P604: Speech recognition for low-resource languages</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of ICASSP 2013

  • ISBN

    978-1-4799-0355-9

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    7604-7608

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Vancouver

  • Event location

    Vancouver

  • Event date

    May 27, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article