The subspace Gaussian mixture model-A structured model for speech recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F11%3APU96096" target="_blank" >RIV/00216305:26230/11:PU96096 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The subspace Gaussian mixture model-A structured model for speech recognition
Original language description
Speech recognition based on the Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) framework generally involves training a completely separate GMM in each HMM state.We introduce a model in which the HMM states share a common structure but the means andmixture weights are allowed to vary in a subspace of the full parameter space, controlled by a global mapping from a vector space to the space of GMM parameters.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
36
Pages from-to
404-439
UT code for WoS article
—
EID of the result in the Scopus database
—