All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning to Predict Localized Distortions in Rendered Images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F13%3APU106440" target="_blank" >RIV/00216305:26230/13:PU106440 - isvavai.cz</a>

  • Result on the web

    <a href="http://cadik.posvete.cz" target="_blank" >http://cadik.posvete.cz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/cgf.12248" target="_blank" >10.1111/cgf.12248</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning to Predict Localized Distortions in Rendered Images

  • Original language description

    In this work, we present an analysis of feature descriptors for objective image quality assessment. We explore a large space of possible features including components of existing image quality metrics as well as many traditional computer vision and statistical features. Additionally, we propose new features motivated by human perception and we analyze visual saliency maps acquired using an eye tracker in our user experiments. The discriminative power of the features is assessed by means of a machine learning framework revealing the importance of each feature for image quality assessment task. Furthermore, we propose a new data-driven full-reference image quality metric which outperforms current state-of-the-art metrics. The metric was trained on subjective ground truth data combining two publicly available datasets. For the sake of completeness we create a new testing synthetic dataset including experimentally measured subjective distortion maps. Finally, using the same machine-learning framework we optimize the parameters of popular existing metrics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LD12027" target="_blank" >LD12027: Acquisition and processing of HDR images - Pořizování a zpracování HDR obrazů</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPUTER GRAPHICS FORUM

  • ISSN

    0167-7055

  • e-ISSN

    1467-8659

  • Volume of the periodical

    2013

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    401-410

  • UT code for WoS article

    000327310800042

  • EID of the result in the Scopus database