All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Knowledge Discovery in Mega-Spectra Archives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU136101" target="_blank" >RIV/00216305:26230/14:PU136101 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985815:_____/15:00455725 RIV/68407700:21240/15:00309799

  • Result on the web

    <a href="http://www.gothard.hu/gao-mkk/memorabilia/bigdataconf-2014/proceedings/pdf/BigDataConf-proceedings.021-026.pdf" target="_blank" >http://www.gothard.hu/gao-mkk/memorabilia/bigdataconf-2014/proceedings/pdf/BigDataConf-proceedings.021-026.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Knowledge Discovery in Mega-Spectra Archives

  • Original language description

    The recent progress of astronomical instrumentation resulted in the constructionof multi-object spectrographs with hundreds to thousands of micro-slits or opticalfibers allowing the acquisition of tens of thousands of spectra of celestial objectsper observing night. Currently there are several spectroscopic surveys containingmillions of spectra and much larger are in preparation. Most of the large-scalesurveys are processed spectrum by spectrum in order to estimate physical param-eters of individual objects. The parameters obtained are then used to constructthe better models of space-kinematic structure and evolution of the Universe orits subsystems. Such surveys are, however, very good source of homogenized, pre-processed data for application of machine learning techniques and advanced statis-tical processing common in Astroinformatics. We present challenges of knowledgediscovery process applied to large spectroscopic surveys as well as memory spaceand processing speed demands of current machine learning methods, requiring BigData techniques.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS: XXIV

  • ISBN

    978-1-58381-874-9

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    87-90

  • Publisher name

    Astronomical Society of the Pacific

  • Place of publication

    Calgary

  • Event location

    Waikoloa, Hawaii

  • Event date

    Sep 29, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000371098000016