Fast Sparse Matrix Multiplication on GPU
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU116976" target="_blank" >RIV/00216305:26230/15:PU116976 - isvavai.cz</a>
Result on the web
<a href="http://dl.acm.org/citation.cfm?id=2872604" target="_blank" >http://dl.acm.org/citation.cfm?id=2872604</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fast Sparse Matrix Multiplication on GPU
Original language description
Sparse matrix multiplication is an important algorithm in a wide variety of problems, including graph algorithms, simulations and linear solving to name a few. Yet, there are but a few works related to acceleration of sparse matrix multiplication on a GPU. We present a fast, novel algorithm for sparse matrix multiplication, outperforming the previous algorithm on GPU up to 3x and CPU up to 30x. The principal improvements include more efficient load balancing strategy, and a faster sorting algorithm. The main contribution is design and implementation of efficient sparse matrix multiplication algorithm and extending it to sparse block matrices, which is to our best knowledge the first implementation of this kind.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/7E13044" target="_blank" >7E13044: IMPART - Intelligent Management Platform for Advanced Real-Time media processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23rd High Performance Computing Symposium (HPC'15)
ISBN
978-1-5108-0101-1
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
Association for Computing Machinery
Place of publication
Alexandria, Virginia
Event location
Alexandria, Virginia
Event date
Apr 12, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—