Analyzing Machine Performance Using Data Mining
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121664" target="_blank" >RIV/00216305:26230/16:PU121664 - isvavai.cz</a>
Result on the web
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11230" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11230</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI.2016.7849923" target="_blank" >10.1109/SSCI.2016.7849923</a>
Alternative languages
Result language
angličtina
Original language name
Analyzing Machine Performance Using Data Mining
Original language description
This paper focuses on analysis of machine performance in a manufacturing company. Machine behavior can be complex, because it usually consists of many tasks. Performance of these tasks depends on product attributes, worker's speed, and therefore, analysis is not simple. Performance analysis results can be used for different purposes. Prediction and description are typical products of data mining. Prediction should be used for online monitoring of the manufactory process and as an input for a scheduler. Description can serve as information for managers to know which attributes of products cause problems more frequently. However manufacturing processes are complex, every process is quite unique. Our long term goal is to generalize the most common patterns to build general analyzer. This task is not simple because the lack of real word data and information. Therefore this work may contribute to the other researchers in their understanding of real world manufacturing problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2016 IEEE Symposium on Computational Intelligence and Data Mining
ISBN
978-1-5090-4239-5
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
Athens
Event location
Athens
Event date
Dec 6, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000400488300099