Training Data Augmentation and Data Selection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126474" target="_blank" >RIV/00216305:26230/17:PU126474 - isvavai.cz</a>
Result on the web
<a href="http://www.springer.com/gp/book/9783319646794#aboutBook" target="_blank" >http://www.springer.com/gp/book/9783319646794#aboutBook</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-64680-0_10" target="_blank" >10.1007/978-3-319-64680-0_10</a>
Alternative languages
Result language
angličtina
Original language name
Training Data Augmentation and Data Selection
Original language description
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. Chapter 10 is about the Training Data Augmentation and Data Selection.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
New Era for Robust Speech Recognition: Exploiting Deep Learning
ISBN
978-3-319-64679-4
Number of pages of the result
16
Pages from-to
245-260
Number of pages of the book
436
Publisher name
Springer International Publishing
Place of publication
Heidelberg
UT code for WoS chapter
—