All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of Multilingual BLSTM Acoustic Model on Lowand High Resource Languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130734" target="_blank" >RIV/00216305:26230/18:PU130734 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11720" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11720</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2018.8462083" target="_blank" >10.1109/ICASSP.2018.8462083</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of Multilingual BLSTM Acoustic Model on Lowand High Resource Languages

  • Original language description

    The paper provides an analysis of automatic speech recognition systems (ASR) based on multilingual BLSTM, where we used multi-task training with separate classification layer for each language. The focus is on low resource languages, where only a limited amount of transcribed speech is available. In such scenario, we found it essential to train the ASR systems in a multilingual fashion and we report superior results obtained with pre-trained multilingual BLSTM on this task. The high resource languages are also taken into account and we show the importance of language richness for multilingual training. Next, we present the performance of this technique as a function of amount of target language data. The importance of including context information into BLSTM multilingual systems is also stressed, and we report increased resilience of large NNs to overtraining in case of multi-task training.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of ICASSP 2018

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    5789-5793

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Calgary

  • Event location

    Calgary

  • Event date

    Apr 15, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000446384605189