Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130798" target="_blank" >RIV/00216305:26230/18:PU130798 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/NEUREL.2018.8586996" target="_blank" >http://dx.doi.org/10.1109/NEUREL.2018.8586996</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NEUREL.2018.8586996" target="_blank" >10.1109/NEUREL.2018.8586996</a>
Alternative languages
Result language
angličtina
Original language name
Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks
Original language description
In this paper, we explore the implementation of vehicle and pedestrian detection based on neural networks in a real-world application. We suggest changes to the previously published method with respect to capabilities of low-powered devices, such as Nvidia Jetson platform. Our experimental evaluation shows that detectors are capable of running 10.7 FPS on Jetson TX2 and can be used in real-world applications.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2018 14th Symposium on Neural Networks and Applications (NEUREL)
ISBN
978-1-5386-6974-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE Signal Processing Society
Place of publication
Belgrade
Event location
SAVA Center Milentija Popovića 9 11070, Belgrade
Event date
Nov 20, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000457745100017