All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU132245" target="_blank" >RIV/00216305:26230/18:PU132245 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374167" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374167</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICARSC.2018.8374167" target="_blank" >10.1109/ICARSC.2018.8374167</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data

  • Original language description

    This paper presents a novel method for ground segmentation in Velodyne point clouds. We propose an encoding of sparse 3D data from the Velodyne sensor suitable for training a convolutional neural network (CNN). This general purpose approach is used for segmentation of the sparse point cloud into ground and non-ground points. The LiDAR data are represented as a multi-channel 2D signal where the horizontal axis corresponds to the rotation angle and the vertical axis represents channels - laser beams. Multiple topologies of relatively shallow CNNs (i.e. 3-5 convolutional layers) are trained and evaluated, using a manually annotated dataset we prepared. The results show significant improvement of performance over the state-of-the-art method by Zhang et al. in terms of speed and also minor improvements in terms of accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE International Conference on Autonomous Robot Systems and Competitions

  • ISBN

    978-1-5386-5221-3

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    97-103

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Torres Vedras

  • Event location

    Torres Vedras

  • Event date

    Apr 25, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000435384800018