All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU132246" target="_blank" >RIV/00216305:26230/18:PU132246 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374163&isnumber=8374143" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374163&isnumber=8374143</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICARSC.2018.8374163" target="_blank" >10.1109/ICARSC.2018.8374163</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR

  • Original language description

    We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE International Conference on Autonomous Robot Systems and Competitions

  • ISBN

    978-1-5386-5221-3

  • ISSN

    2573-9387

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    71-77

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Torres Vedras

  • Event location

    Torres Vedras

  • Event date

    Apr 25, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000435384800014