Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU136057" target="_blank" >RIV/00216305:26230/18:PU136057 - isvavai.cz</a>
Result on the web
<a href="https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1836.html" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1836.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2018-1836" target="_blank" >10.21437/Interspeech.2018-1836</a>
Alternative languages
Result language
angličtina
Original language name
Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages
Original language description
Automatic speech recognition (ASR) systems often need to be developed for extremely low-resource languages to serve enduses such as audio content categorization and search. While universal phone recognition is natural to consider when no transcribed speech is available to train an ASR system in a language, adapting universal phone models using very small amounts (minutes rather than hours) of transcribed speech also needs to be studied, particularly with state-of-the-art DNN-based acoustic models. The DARPA LORELEI program provides a framework for such very-low-resource ASR studies, and provides an extrinsic metric for evaluating ASR performance in a humanitarian assistance, disaster relief setting. This paper presents our Kaldi-based systems for the program, which employ a universal phone modeling approach to ASR, and describes recipes for very rapid adaptation of this universal ASR system. The results we obtain significantly outperform results obtained by many competing approaches on the NIST LoReHLT 2017 Evaluation datasets
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Interspeech
ISBN
—
ISSN
1990-9772
e-ISSN
—
Number of pages
5
Pages from-to
2052-2056
Publisher name
International Speech Communication Association
Place of publication
Hyderabad
Event location
Hyderabad, India
Event date
Sep 2, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000465363900431