Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134188" target="_blank" >RIV/00216305:26230/19:PU134188 - isvavai.cz</a>
Result on the web
<a href="https://www.dega-akustik.de/publikationen/online-proceedings/" target="_blank" >https://www.dega-akustik.de/publikationen/online-proceedings/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources
Original language description
Classically, automatic speech recognition (ASR) models are decomposed into acoustic models and language models (LM). LMs usually exploit the linguistic structure on a purely textual level and usually contribute strongly to an ASR systems performance. LMs are estimated on large amounts of textual data covering the target domain. However, most utterances cover more specic topics, e.g. in uencing the vocabulary used. Therefore, it's desirable to have the LM adjusted to an utterance's topic. Previous work achieves this by crawling extra data from the web or by using signicant amounts of previous speech data to train topic-specic LM on. We propose a way of adapting the LM directly using the target utterance to be recognized. The corresponding adaptation needs to be done in an unsupervised or automatically supervised way based on the speech input. To deal with corresponding errors robustly, we employ topic encodings from the recently proposed Subspace Multinomial Model. This model also avoids any need of explicit topic labelling during training or recognition, making the proposed method straight-forward to use. We demonstrate the performance of the method on the Librispeech corpus, which consists of read ction books, and we discuss it's behaviour qualitatively.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_027%2F0008371" target="_blank" >EF16_027/0008371: International mobility of researchers at the Brno University of Technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of DAGA 2019
ISBN
978-3-939296-14-0
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
954-957
Publisher name
DEGA Head office, Deutsche Gesellschaft für Akustik
Place of publication
Rostock
Event location
Rostock
Event date
Mar 18, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—