All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Document Embeddings Along With Their Uncertainties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138655" target="_blank" >RIV/00216305:26230/20:PU138655 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9149686" target="_blank" >https://ieeexplore.ieee.org/document/9149686</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2020.3012062" target="_blank" >10.1109/TASLP.2020.3012062</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Document Embeddings Along With Their Uncertainties

  • Original language description

    Majority of the text modeling techniques yield only point-estimates of document embeddings and lack in capturing the uncertainty of the estimates. These uncertainties give a notion of how well the embeddings represent a document. We present Bayesian subspace multinomial model (Bayesian SMM), a generative log-linear model that learns to represent documents in the form of Gaussian distributions, thereby encoding the uncertainty in its covariance. Additionally, in the proposed Bayesian SMM, we address a commonly encountered problem of intractability that appears during variational inference in mixed-logit models. We also present a generative Gaussian linear classifier for topic identification that exploits the uncertainty in document embeddings. Our intrinsic evaluation using perplexity measure shows that the proposed Bayesian SMM fits the unseen test data better as compared to the state-of-the-art neural variational document model on (Fisher) speech and (20Newsgroups) text corpora. Our topic identification experiments showthat the proposed systems are robust to over-fitting on unseen test data. The topic ID results show that the proposedmodel outperforms state-of-the-art unsupervised topic models and achieve comparable results to the state-of-the-art fully supervised discriminative models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

  • ISSN

    2329-9290

  • e-ISSN

    2329-9304

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    28

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    2319-2332

  • UT code for WoS article

    000562410300004

  • EID of the result in the Scopus database

    2-s2.0-85090796297