All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning document representations using subspace multinomial model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122424" target="_blank" >RIV/00216305:26230/16:PU122424 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.researchgate.net/publication/307889473_Learning_Document_Representations_Using_Subspace_Multinomial_Model" target="_blank" >https://www.researchgate.net/publication/307889473_Learning_Document_Representations_Using_Subspace_Multinomial_Model</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2016-1634" target="_blank" >10.21437/Interspeech.2016-1634</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning document representations using subspace multinomial model

  • Original language description

    Subspace multinomial model (SMM) is a log-linear model and can be used for learning low dimensional continuous representation for discrete data. SMMand its variants have been used for speaker verification based on prosodic features and phonotactic language recognition. In this paper, we propose a new variant of SMM that introduces sparsity and call the resulting model as `1 SMM. We show that `1 SMM can be used for learning document representations that are helpful in topic identification or classification and clustering tasks. Our experiments in document classification show that SMM achieves comparable results to models such as latent Dirichlet allocation and sparse topical coding, while having a useful property that the resulting document vectors are Gaussian distributed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Interspeech 2016

  • ISBN

    978-1-5108-3313-5

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    700-704

  • Publisher name

    International Speech Communication Association

  • Place of publication

    San Francisco

  • Event location

    San Francisco

  • Event date

    Sep 8, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000409394400145