Evolving Cryptographic Boolean Functions with Minimal Multiplicative Complexity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138697" target="_blank" >RIV/00216305:26230/20:PU138697 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/CEC48606.2020.9185517" target="_blank" >http://dx.doi.org/10.1109/CEC48606.2020.9185517</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC48606.2020.9185517" target="_blank" >10.1109/CEC48606.2020.9185517</a>
Alternative languages
Result language
angličtina
Original language name
Evolving Cryptographic Boolean Functions with Minimal Multiplicative Complexity
Original language description
The multiplicative complexity (MC) is a cryptographic criterion that describes the vulnerability of a Boolean function to certain algebraic attacks, and in many important cryptographic applications also determines the computational cost. In this paper, we use Cartesian genetic programming to find various types of cryptographic Boolean functions, improve their implementation to achieve the minimal MC, and examine how difficult these optimized functions are to find in comparison to functions than only need to satisfy some base cryptographic criteria. To provide a comparison with other state-of-the-art optimization approaches, we also use our method to improve the implementation of several generic benchmark circuits. Our results provide new upper limits on MC of certain functions, show that our approach is competitive, and also that finding functions with an implementation that has better MC is not mutually exclusive with improving other performance criteria.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-10137S" target="_blank" >GA19-10137S: Designing and exploiting libraries of approximate circuits</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 IEEE Congress on Evolutionary Computation (CEC)
ISBN
978-1-7281-6929-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
IEEE Computational Intelligence Society
Place of publication
Los Alamitos
Event location
Glasgow
Event date
Jul 19, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000703998200029