All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolving Cryptographic Boolean Functions with Minimal Multiplicative Complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138697" target="_blank" >RIV/00216305:26230/20:PU138697 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CEC48606.2020.9185517" target="_blank" >http://dx.doi.org/10.1109/CEC48606.2020.9185517</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC48606.2020.9185517" target="_blank" >10.1109/CEC48606.2020.9185517</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolving Cryptographic Boolean Functions with Minimal Multiplicative Complexity

  • Original language description

    The multiplicative complexity (MC) is a cryptographic criterion that describes the vulnerability of a Boolean function to certain algebraic attacks, and in many important cryptographic applications also determines the computational cost. In this paper, we use Cartesian genetic programming to find various types of cryptographic Boolean functions, improve their implementation to achieve the minimal MC, and examine how difficult these optimized functions are to find in comparison to functions than only need to satisfy some base cryptographic criteria. To provide a comparison with other state-of-the-art optimization approaches, we also use our method to improve the implementation of several generic benchmark circuits. Our results provide new upper limits on MC of certain functions, show that our approach is competitive, and also that finding functions with an implementation that has better MC is not mutually exclusive with improving other performance criteria.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-10137S" target="_blank" >GA19-10137S: Designing and exploiting libraries of approximate circuits</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE Congress on Evolutionary Computation (CEC)

  • ISBN

    978-1-7281-6929-3

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE Computational Intelligence Society

  • Place of publication

    Los Alamitos

  • Event location

    Glasgow

  • Event date

    Jul 19, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000703998200029