All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimation of Execution Parameters for k-Wave Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138609" target="_blank" >RIV/00216305:26230/21:PU138609 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-67077-1_7" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-67077-1_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-67077-1_7" target="_blank" >10.1007/978-3-030-67077-1_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimation of Execution Parameters for k-Wave Simulations

  • Original language description

    Estimation of execution parameters takes centre stage in automatic offloading of complex biomedical workflows to cloud and high performance facilities. Since ordinary users have no or very limited knowledge of the performance characteristics of particular tasks in the workflow, the scheduling system has to have the capabilities to select appropriate amount of compute resources, e.g., compute nodes, GPUs, or processor cores and estimate the execution time and cost. The presented approach considers a fixed set of executables that can be used to create custom workflows, and collects performance data of successfully computed tasks. Since the workflows may differ in the structure and size of the input data, the execution parameters can only be obtained by searching the performance database and interpolating between similar tasks. This paper shows it is possible to predict the execution time and cost with a high confidence. If the task parameters are found in the performance database, the mean interpolation error stays below 2.29%. If only similar tasks are found, the mean interpolation error may grow up to 15%. Nevertheless, this is still an acceptable error since the cluster performance may vary on order of percent as well.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    High Performance Computing in Science and Engineering. HPCSE 2019

  • ISBN

    978-3-030-67076-4

  • ISSN

  • e-ISSN

  • Number of pages

    19

  • Pages from-to

    116-134

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Hotel Soláň

  • Event date

    May 20, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article