All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing Biomedical Ultrasound Workflow Scheduling Using Cluster Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F20%3A10133331" target="_blank" >RIV/63839172:_____/20:10133331 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26230/20:PU138624

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-63171-0_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-63171-0_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63171-0_4" target="_blank" >10.1007/978-3-030-63171-0_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing Biomedical Ultrasound Workflow Scheduling Using Cluster Simulations

  • Original language description

    Therapeutic ultrasound plays an increasing role in dealing with oncological diseases, drug delivery and neurostimulation. To maximize the treatment outcome, thorough pre-operative planning using complex numerical models considering patient anatomy is crucial. From the computational point of view, the treatment planning can be seen as the execution of a complex workflow consisting of many different tasks with various computational requirements on a remote cluster or in cloud. Since these resources are precious, workflow scheduling plays an important part in the whole process. This paper describes an extended version of the k-Dispatch workflow management system that uses historical performance data collected on similar workflows to choose suitable amount of computational resources and estimates execution time and cost of particular tasks. This paper also introduces necessary extensions to the Alea cluster simulator that enable the estimation of the queuing and total execution time of the whole workflow. The conjunction of both systems then allows for finegrain optimization of the workflow execution parameters with respect to the current cluster utilization. The experimental results show that this approach is able to reduce the computational time by 26%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_013%2F0001797" target="_blank" >EF16_013/0001797: CESNET E-Infrastructure - Modernisation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Job Scheduling Strategies for Parallel Processing

  • ISBN

    978-3-030-63170-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    68-84

  • Publisher name

    Springer

  • Place of publication

    Switzerland

  • Event location

    New Orleans

  • Event date

    May 22, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article