Evolutionary Neural Architecture Search Supporting Approximate Multipliers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138875" target="_blank" >RIV/00216305:26230/21:PU138875 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-72812-0_6" target="_blank" >10.1007/978-3-030-72812-0_6</a>
Alternative languages
Result language
angličtina
Original language name
Evolutionary Neural Architecture Search Supporting Approximate Multipliers
Original language description
There is a growing interest in automated neural architecture search (NAS) methods. They are employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designer's effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to minimize the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with approximate multipliers to deliver the best trade-offs between the accuracy, network size, and power consumption. The most suitable approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-13001S" target="_blank" >GA21-13001S: Automated design of hardware accelerators for resource-aware machine learning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Genetic Programming, 24th European Conference, EuroGP 2021
ISBN
978-3-030-72812-0
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
82-97
Publisher name
Springer Nature Switzerland AG
Place of publication
Seville
Event location
Seville
Event date
Apr 7, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000894232700006