All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Neural Architecture Search Supporting Approximate Multipliers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138875" target="_blank" >RIV/00216305:26230/21:PU138875 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-72812-0_6" target="_blank" >10.1007/978-3-030-72812-0_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Neural Architecture Search Supporting Approximate Multipliers

  • Original language description

    There is a growing interest in automated neural architecture search (NAS) methods. They are employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designer's effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to minimize the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with approximate multipliers to deliver the best trade-offs between the accuracy, network size, and power consumption. The most suitable approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-13001S" target="_blank" >GA21-13001S: Automated design of hardware accelerators for resource-aware machine learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Genetic Programming, 24th European Conference, EuroGP 2021

  • ISBN

    978-3-030-72812-0

  • ISSN

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    82-97

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Seville

  • Event location

    Seville

  • Event date

    Apr 7, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000894232700006