All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU146796" target="_blank" >RIV/00216305:26230/23:PU146796 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10011413" target="_blank" >https://ieeexplore.ieee.org/document/10011413</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JETCAS.2023.3235204" target="_blank" >10.1109/JETCAS.2023.3235204</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks

  • Original language description

    The main issue connected with using approximate components such as approximate multipliers in deep convolutional neural networks (CNN) during the design process is the necessity to emulate them due to the lack of native support for approximate operations in modern CPUs and GPUs, which is computationally expensive. To accelerate the emulation of approximate operations of CNNs on GPUs, we propose TFApprox4IL, a software library supporting both symmetric as well as asymmetric quantization modes, approximate 8xN bit multipliers emulated using lookup tables, a new type of approximate layer known as approximate depthwise convolution, and quantization-aware training. The TFApprox4IL performance is extensively evaluated in the simulation of approximate implementations of MobileNetV2 and ResNet networks on Nvidia Pascal and Tesla GPU architectures. Furthermore, TFApprox4IL is also evaluated in neural architecture search (NAS) algorithms to automatically design CNN architectures that directly employ approximate multipliers. On two different NAS methods, EvoApproxNAS and Google Model Search (GMS), we show how approximate multipliers can effectively be incorporated into the CNN design process. To estimate the energy consumption of the approximate CNNs, AxMultAT tool based on Timeloop and Accelergy is introduced. Contrasted to the highly optimized GPU-based CNN simulation implemented using exact arithmetic operations available within TensorFlow, the average overhead of the inference and training, introduced by TFApprox4IL, is 13.6× and 8.0× , respectively, considering ResNet50V2 and MobileNetV2 CNNs on ImageNet and CIFAR-10 data sets. This overhead was reduced by one order of magnitude with respect to previous methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-13001S" target="_blank" >GA21-13001S: Automated design of hardware accelerators for resource-aware machine learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Journal on Emerging and Selected Topics in Circuits and Systems

  • ISSN

    2156-3357

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    212-224

  • UT code for WoS article

    000965262200001

  • EID of the result in the Scopus database

    2-s2.0-85147308000