All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inexact Arithmetic Operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144759" target="_blank" >RIV/00216305:26230/22:PU144759 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/book/10.1007/978-3-030-94705-7" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-94705-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-94705-7_4" target="_blank" >10.1007/978-3-030-94705-7_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inexact Arithmetic Operators

  • Original language description

    Approximate implementations of arithmetic circuits have been developed to find the best trade-offs between the key circuit parameters (such as energy, area, and delay) and the error of arithmetic operations. This chapter discusses various methodological aspects of developing approximate arithmetic circuits, including design abstractions, number representation, error analysis methods, and particular design methods. We survey problem-specific methods proposed for the manual design of approximate adders and multipliers. The circuit approximation problem is also formulated as a multi-objective optimization problem that can be solved by a suitable automated circuit design method. A comprehensive open-source library EvoAppoxLib of approximate circuits that was automatically generated by one of the automated methods is introduced. We stress the importance of correct evaluation and comparison of approximate implementations and a proper benchmarking methodology. Finally, two case studies demonstrate some frequently overlooked issues related to the selected error analysis approaches.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-10137S" target="_blank" >GA19-10137S: Designing and exploiting libraries of approximate circuits</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Approximate Computing Techniques

  • ISBN

    978-3-030-94704-0

  • Number of pages of the result

    27

  • Pages from-to

    81-107

  • Number of pages of the book

    531

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • UT code for WoS chapter