Training Speaker Embedding Extractors Using Multi-Speaker Audio with Unknown Speaker Boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146060" target="_blank" >RIV/00216305:26230/22:PU146060 - isvavai.cz</a>
Result on the web
<a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/stafylakis22_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/stafylakis22_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-10165" target="_blank" >10.21437/Interspeech.2022-10165</a>
Alternative languages
Result language
angličtina
Original language name
Training Speaker Embedding Extractors Using Multi-Speaker Audio with Unknown Speaker Boundaries
Original language description
In this paper, we demonstrate a method for training speaker em- bedding extractors using weak annotation. More specifically, we are using the full VoxCeleb recordings and the name of the celebrities appearing on each video without knowledge of the time intervals the celebrities appear in the video. We show that by combining a baseline speaker diarization algorithm that re- quires no training or parameter tuning, a modified loss with aggregation over segments, and a two-stage training approach, we are able to train a competitive ResNet-based embedding extractor. Finally, we experiment with two different aggregation functions and analyze their behaviour in terms of their gradients.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Number of pages
5
Pages from-to
605-609
Publisher name
International Speech Communication Association
Place of publication
Incheon
Event location
Incheon Korea
Event date
Sep 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—