All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Speaker adaptation for Wav2vec2 based dysarthric ASR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146142" target="_blank" >RIV/00216305:26230/22:PU146142 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/baskar22b_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/baskar22b_interspeech.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2022-10896" target="_blank" >10.21437/Interspeech.2022-10896</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Speaker adaptation for Wav2vec2 based dysarthric ASR

  • Original language description

    Dysarthric speech recognition has posed major challenges due to lack of training data and heavy mismatch in speaker characteristics. Recent ASR systems have benefited from readily available pretrained models such as wav2vec2 to improve the recognition performance. Speaker adaptation using fMLLR and xvectors have provided major gains for dysarthric speech with very little adaptation data. However, integration of wav2vec2 with fMLLR features or xvectors during wav2vec2 finetuning is yet to be explored. In this work, we propose a simple adaptation network for fine-tuning wav2vec2 using fMLLR features. The adaptation network is also flexible to handle other speaker adaptive features such as xvectors. Experimental analysis show steady improvements using our proposed approach across all impairment severity levels and attains 57.72% WER for high severity in UASpeech dataset. We also performed experiments on German dataset to substantiate the consistency of our proposed approach across diverse domains.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    3403-3407

  • Publisher name

    International Speech Communication Association

  • Place of publication

    Incheon

  • Event location

    Incheon Korea

  • Event date

    Sep 18, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article