Initialization of fMLLR with Sufficient Statistics from Similar Speakers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898196" target="_blank" >RIV/49777513:23520/11:43898196 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-23538-2_24" target="_blank" >http://dx.doi.org/10.1007/978-3-642-23538-2_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-23538-2_24" target="_blank" >10.1007/978-3-642-23538-2_24</a>
Alternative languages
Result language
angličtina
Original language name
Initialization of fMLLR with Sufficient Statistics from Similar Speakers
Original language description
One of the most utilized adaptation techniques is the feature Maximum Likelihood Linear Regression (fMLLR). In comparison with other adaptation methods the number of free parameters to be estimated significantly decreases. Thus, the method is well suitedfor situations with small amount of adaptation data. However, fMLLR still fails in situations with extremely small data sets. Such situations can be solved through proper initialization of fMLLR estimation adding some a-priori information. In this papera novel approach is proposed solving the problem of fMLLR initialization involving statistics from speakers acoustically close to the speaker to be adapted. Proposed initialization suitably substitutes missing adaptation data with similar data from a training database, fMLLR estimation becomes well-conditioned, and the accuracy of the recognition system increases even in situations with extremely small data sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
6836
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
187-194
UT code for WoS article
—
EID of the result in the Scopus database
—