All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Adaptation Techniques Dealing with Small Amount of Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915990" target="_blank" >RIV/49777513:23520/12:43915990 - isvavai.cz</a>

  • Result on the web

    <a href="http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf" target="_blank" >http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Adaptation Techniques Dealing with Small Amount of Data

  • Original language description

    The worst problem the adaptation is dealing with is the lack of adaptation data. This work focuses on the feature Maximum Likelihood Linear Regression (fMLLR) adaptation where the number of free parameters to be estimated significantly decreases in comparison with other adaptation methods. However, the number of free parameters of fMLLR transform is still too high to be estimated properly when dealing with extremely small data sets. We described and compared various methods used to avoid this problem, namely the initialization of the fMLLR transform and a linear combination of basis matrices varying in the choice of the basis estimation (eigen decomposition, factor analysis, independent component analysis and maximum likelihood estimation). Initialization methods compensate the absence of the test speaker's data utilizing other suitable data. Methods using linear combination of basis matrices reduce the number of estimated fMLLR parameters to a smaller number of weights to be estimated

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: ASR- and MT-based Access to a Large Archive of Cultural Heritage (AMALACH)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    7499

  • Issue of the periodical within the volume

    neuveden

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    8

  • Pages from-to

    480-487

  • UT code for WoS article

  • EID of the result in the Scopus database