Robust Adaptation Techniques Dealing with Small Amount of Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915990" target="_blank" >RIV/49777513:23520/12:43915990 - isvavai.cz</a>
Result on the web
<a href="http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf" target="_blank" >http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Robust Adaptation Techniques Dealing with Small Amount of Data
Original language description
The worst problem the adaptation is dealing with is the lack of adaptation data. This work focuses on the feature Maximum Likelihood Linear Regression (fMLLR) adaptation where the number of free parameters to be estimated significantly decreases in comparison with other adaptation methods. However, the number of free parameters of fMLLR transform is still too high to be estimated properly when dealing with extremely small data sets. We described and compared various methods used to avoid this problem, namely the initialization of the fMLLR transform and a linear combination of basis matrices varying in the choice of the basis estimation (eigen decomposition, factor analysis, independent component analysis and maximum likelihood estimation). Initialization methods compensate the absence of the test speaker's data utilizing other suitable data. Methods using linear combination of basis matrices reduce the number of estimated fMLLR parameters to a smaller number of weights to be estimated
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: ASR- and MT-based Access to a Large Archive of Cultural Heritage (AMALACH)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7499
Issue of the periodical within the volume
neuveden
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
480-487
UT code for WoS article
—
EID of the result in the Scopus database
—