Vision UFormer: Long-Range Monocular Absolute Depth Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149297" target="_blank" >RIV/00216305:26230/23:PU149297 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0097849323000262" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0097849323000262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cag.2023.02.003" target="_blank" >10.1016/j.cag.2023.02.003</a>
Alternative languages
Result language
angličtina
Original language name
Vision UFormer: Long-Range Monocular Absolute Depth Estimation
Original language description
We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth estimator. The input is an RGB image, and the output is an image that stores the absolute distance of the object in the scene as its per-pixel values. ViUT consists of a Transformer encoder and a ResNet decoder combined with UNet style of skip connections. It is trained on 1M images across ten datasets in a staged regime that starts with easier-to-predict data such as indoor photographs and continues to more complex long-range outdoor scenes. We show that ViUT provides comparable results for normalized relative distances and short-range classical datasets such as NYUv2 and KITTI. We further show that it successfully estimates of absolute long-range depth in meters. We validate ViUT on a wide variety of long-range scenes showing its high estimation capabilities with a relative improvement of up to 23%. Absolute depth estimation finds application in many areas, and we show its usability in image composition, range annotation, defocus, and scene reconstruction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LTAIZ19004" target="_blank" >LTAIZ19004: Deep-Learning Approach to Topographical Image Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTERS & GRAPHICS-UK
ISSN
0097-8493
e-ISSN
1873-7684
Volume of the periodical
111
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
180-189
UT code for WoS article
000954860700001
EID of the result in the Scopus database
2-s2.0-85149382691