All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Guiding Monocular Depth Estimation Using Depth-Attention Volume

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346894" target="_blank" >RIV/68407700:21230/20:00346894 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-58574-7_35" target="_blank" >https://doi.org/10.1007/978-3-030-58574-7_35</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58574-7_35" target="_blank" >10.1007/978-3-030-58574-7_35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Guiding Monocular Depth Estimation Using Depth-Attention Volume

  • Original language description

    Recovering the scene depth from a single image is an ill-posed problem that requires additional priors, often referred to as monocular depth cues, to disambiguate different 3D interpretations. In recent works, those priors have been learned in an end-to-end manner from large datasets by using deep neural networks. In this paper, we propose guiding depth estimation to favor planar structures that are ubiquitous especially in indoor environments. This is achieved by incorporating a non-local coplanarity constraint to the network with a novel attention mechanism called depth-attention volume (DAV). Experiments on two popular indoor datasets, namely NYU-Depth-v2 and ScanNet, show that our method achieves state-of-the-art depth estimation results while using only a fraction of the number of parameters needed by the competing methods. Code is available at: https://github.com/HuynhLam/DAV.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision - ECCV 2020, Part XXVI

  • ISBN

    978-3-030-58573-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    17

  • Pages from-to

    581-597

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Glasgow

  • Event date

    Aug 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article