All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monocular Depth Estimation Primed by Salient Point Detection and Normalized Hessian Loss

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00364661" target="_blank" >RIV/68407700:21230/21:00364661 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/3DV53792.2021.00033" target="_blank" >https://doi.org/10.1109/3DV53792.2021.00033</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/3DV53792.2021.00033" target="_blank" >10.1109/3DV53792.2021.00033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monocular Depth Estimation Primed by Salient Point Detection and Normalized Hessian Loss

  • Original language description

    Deep neural networks have recently thrived on single image depth estimation. That being said, current developments on this topic highlight an apparent compromise between accuracy and network size. This work proposes an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection. Specifically, we utilize a sparse set of keypoints to train a FuSaNet model that consists of two major components: Fusion-Net and Saliency-Net. In addition, we introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy. The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches. Experiments on the SUN-RGBD further demonstrate the generalizability of the proposed method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    3DV 2021: Proceedings of the International Conference on 3D Vision

  • ISBN

    978-1-6654-2688-6

  • ISSN

    2378-3826

  • e-ISSN

    2475-7888

  • Number of pages

    11

  • Pages from-to

    228-238

  • Publisher name

    IEEE Computer Soc.

  • Place of publication

    Los Alamitos, CA

  • Event location

    Virtual

  • Event date

    Dec 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000786496000023