All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Boosting Monocular Depth Estimation with Lightweight 3D Point Fusion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354697" target="_blank" >RIV/68407700:21230/21:00354697 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV48922.2021.01253" target="_blank" >https://doi.org/10.1109/ICCV48922.2021.01253</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV48922.2021.01253" target="_blank" >10.1109/ICCV48922.2021.01253</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Boosting Monocular Depth Estimation with Lightweight 3D Point Fusion

  • Original language description

    In this paper, we propose enhancing monocular depthestimation by adding 3D points as depth guidance. Un-like existing depth completion methods, our approach per-forms well on extremely sparse and unevenly distributedpoint clouds, which makes it agnostic to the source of the3D points. We achieve this by introducing a novel multi-scale 3D point fusion network that is both lightweight andefficient. We demonstrate its versatility on two differentdepth estimation problems where the 3D points have beenacquired with conventional structure-from-motion and Li-DAR. In both cases, our network performs on par with state-of-the-art depth completion methods and achieves signifi-cantly higher accuracy when only a small number of pointsis used while being more compact in terms of the num-ber of parameters. We show that our method outperformssome contemporary deep learning based multi-view stereoand structure-from-motion methods both in accuracy and incompactness.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICCV2021: Proceedings of the International Conference on Computer Vision

  • ISBN

    978-1-6654-2812-5

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    10

  • Pages from-to

    12767-12776

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Montreal

  • Event date

    Oct 11, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article