All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

RGBD-Net: Predicting Color and Depth Images for Novel Views Synthesis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00357172" target="_blank" >RIV/68407700:21230/21:00357172 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/3DV53792.2021.00117" target="_blank" >https://doi.org/10.1109/3DV53792.2021.00117</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/3DV53792.2021.00117" target="_blank" >10.1109/3DV53792.2021.00117</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    RGBD-Net: Predicting Color and Depth Images for Novel Views Synthesis

  • Original language description

    We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network. The former one predicts depth maps of the target views by using adaptive depth scaling, while the latter one leverages the predicted depths and renders spatially and temporally consistent target images. In the experimental evaluation on standard datasets, RGBD-Net not only outperforms the state-of-the-art by a clear margin, but it also generalizes well to new scenes without per-scene optimization. Moreover, we show that RGBD-Net can be optionally trained without depth supervision while still retaining high-quality rendering. Thanks to the depth regression network, RGBD-Net can be also used for creating dense 3D point clouds that are more accurate than those produced by some state-of-the-art multi-view stereo methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    3DV 2021: Proceedings of the International Conference on 3D Vision

  • ISBN

    978-1-6654-2688-6

  • ISSN

    2378-3826

  • e-ISSN

    2475-7888

  • Number of pages

    11

  • Pages from-to

    1095-1105

  • Publisher name

    IEEE Computer Soc.

  • Place of publication

    Los Alamitos, CA

  • Event location

    Virtual

  • Event date

    Dec 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article