All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lightweight Monocular Depth with a Novel Neural Architecture Search Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362944" target="_blank" >RIV/68407700:21230/22:00362944 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/WACV51458.2022.00040" target="_blank" >https://doi.org/10.1109/WACV51458.2022.00040</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV51458.2022.00040" target="_blank" >10.1109/WACV51458.2022.00040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lightweight Monocular Depth with a Novel Neural Architecture Search Method

  • Original language description

    This paper presents a novel neural architecture search method, called LiDNAS, for generating lightweight monocular depth estimation models. Unlike previous neural architecture search (NAS) approaches, where finding optimized networks is computationally demanding, the introduced novel Assisted Tabu Search leads to efficient architecture exploration. Moreover, we construct the search space on a pre-defined backbone network to balance layer diversity and search space size. The LiDNAS method outperforms the state-of-the-art NAS approach, proposed for disparity and depth estimation, in terms of search efficiency and output model performance. The LiDNAS optimized models achieve result superior to compact depth estimation state-of-the-art on NYU-Depth-v2, KITTI, and ScanNet, while being 7%-500% more compact in size, i.e the number of model parameters.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022

  • ISBN

    978-1-6654-0915-5

  • ISSN

    2472-6737

  • e-ISSN

    2642-9381

  • Number of pages

    11

  • Pages from-to

    326-336

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Waikoloa

  • Event date

    Jan 3, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000800471200033