All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-objective Bayesian Optimization for Neural Architecture Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00568613" target="_blank" >RIV/67985807:_____/23:00568613 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1007/978-3-031-23492-7_13" target="_blank" >https://dx.doi.org/10.1007/978-3-031-23492-7_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-23492-7_13" target="_blank" >10.1007/978-3-031-23492-7_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-objective Bayesian Optimization for Neural Architecture Search

  • Original language description

    A novel multi-objective algorithm denoted as MO-BayONet is proposed for the Neural Architecture Search (NAS) in this paper. The method based on Bayesian optimization encodes the candidate architectures directly as lists of layers and constructs an extra feature vector for the corresponding surrogate model. The general method allows to accompany the search for the optimal network by additional criteria besides the network performance. The NAS method is applied to combine classification accuracy with network size on two benchmark datasets here. The results indicate that MO-BayONet is able to outperform an available genetic algorithm based approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence and Soft Computing. 21st International Conference, ICAISC 2022. Proceedings, Part I

  • ISBN

    978-3-031-23491-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    144-153

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Zakopane

  • Event date

    Jun 18, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000972696000013