All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GPAM: Genetic Programming with Associative Memory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149355" target="_blank" >RIV/00216305:26230/23:PU149355 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-29573-7_5" target="_blank" >http://dx.doi.org/10.1007/978-3-031-29573-7_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-29573-7_5" target="_blank" >10.1007/978-3-031-29573-7_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GPAM: Genetic Programming with Associative Memory

  • Original language description

    We focus on the evolutionary design of programs capable of capturing more randomness and outliers in the input data set than the standard genetic programming (GP)-based methods typically allow. We propose Genetic Programming with Associative Memory (GPAM) -- a GP-based system for symbolic regression which can utilize a small associative memory to store various data points to better approximate the original data set. The method is evaluated on five standard benchmarks in which a certain number of data points is replaced by randomly generated values. In another case study, GPAM is used as an on-chip generator capable of approximating the weights for a convolutional neural network (CNN) to reduce the access to an external weight memory. Using Cartesian genetic programming (CGP), we evolved expression-memory pairs that can generate weights of a single CNN layer.  If the associative memory contains 10% of the original weights, the weight generator evolved for a convolutional layer can approximate the original weights such that the CNN utilizing the generated weights shows less than a 1% drop in the classification accuracy on the MNIST data set. 

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-13001S" target="_blank" >GA21-13001S: Automated design of hardware accelerators for resource-aware machine learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    26th European Conference on Genetic Programming (EuroGP) Held as Part of EvoStar

  • ISBN

    978-3-031-29572-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    68-83

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Brno

  • Event date

    Apr 12, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000999086900005