Multi-Stream Extension of Variational Bayesian HMM Clustering (MS-VBx) for Combined End-to-End and Vector Clustering-based Diarization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149716" target="_blank" >RIV/00216305:26230/23:PU149716 - isvavai.cz</a>
Result on the web
<a href="https://www.isca-speech.org/archive/pdfs/interspeech_2023/delcroix23_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2023/delcroix23_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-628" target="_blank" >10.21437/Interspeech.2023-628</a>
Alternative languages
Result language
angličtina
Original language name
Multi-Stream Extension of Variational Bayesian HMM Clustering (MS-VBx) for Combined End-to-End and Vector Clustering-based Diarization
Original language description
Combining end-to-end neural speaker diarization (EEND) with vector clustering (VC), known as EEND-VC, has gained interest for leveraging the strengths of both methods. EEND-VC estimates activities and speaker embeddings for all speakers within an audio chunk and uses VC to associate these activities with speaker identities across different chunks. EEND-VC generates thus multiple streams of embeddings, one for each speaker in a chunk. We can cluster these embeddings using constrained agglomerative hierarchical clustering (cAHC), ensuring embeddings from the same chunk belong to different clusters. This paper introduces an alternative clustering approach, a multi-stream extension of the successful Bayesian HMM clustering of x-vectors (VBx), called MS-VBx. Experiments on three datasets demonstrate that MS-VBx outperforms cAHC in diarization and speaker counting performance.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Number of pages
5
Pages from-to
3477-3481
Publisher name
International Speech Communication Association
Place of publication
Dublin
Event location
Dublin
Event date
Aug 20, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—