All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discriminative Training of VBx Diarization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU152297" target="_blank" >RIV/00216305:26230/24:PU152297 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446119" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP48485.2024.10446119" target="_blank" >10.1109/ICASSP48485.2024.10446119</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discriminative Training of VBx Diarization

  • Original language description

    Bayesian HMM clustering of x-vector sequences (VBx) has be- come a widely adopted diarization baseline model in publications and challenges. It uses an HMM to model speaker turns, a gen- eratively trained probabilistic linear discriminant analysis (PLDA) for speaker distribution modeling, and Bayesian inference to esti- mate the assignment of x-vectors to speakers. This paper presents a new framework for updating the VBx parameters using discrim- inative training, which directly optimizes a predefined loss. We also propose a new loss that better correlates with the diarization error rate compared to binary cross-entropy - the default choice for diarization end-to-end systems. Proof-of-concept results across three datasets (AMI, CALLHOME, and DIHARD II) demonstrate the method's capability of automatically finding hyperparameters, achieving comparable performance to those found by extensive grid search, which typically requires additional hyperparameter behavior knowledge. Moreover, we show that discriminative fine-tuning of PLDA can further improve the model's performance. We release the source code with this publication.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    979-8-3503-4485-1

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    11871-11875

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Seoul

  • Event location

    Seoul

  • Event date

    Apr 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article