All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unmasking the Phishermen: Phishing Domain Detection with Machine Learning and Multi-Source Intelligence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU149927" target="_blank" >RIV/00216305:26230/24:PU149927 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10575573" target="_blank" >https://ieeexplore.ieee.org/document/10575573</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575573" target="_blank" >10.1109/NOMS59830.2024.10575573</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unmasking the Phishermen: Phishing Domain Detection with Machine Learning and Multi-Source Intelligence

  • Original language description

    In the digital landscape, phishing attacks have rapidly evolved into a major cybersecurity challenge, posing significant risks to individuals and organizations. This short paper presents our preliminary research on detecting phishing domains. Our approach amalgamates intelligence from multiple sources: DNS servers, WHOIS/RDAP, TLS certificates, and GeoIP data. We created a rich 15.8 GB dataset of information about benign and phishing domains, from which we derived a comprehensive 80-feature vector for training and testing machine learning classifiers. We propose preliminary results with a fine-tuned XGBoost model, achieving 0.9716 precision rate, 0.9540 F-1 score, and false positive rate of 0.23%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024

  • ISBN

    979-8-3503-2794-6

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Soul

  • Event location

    Soul

  • Event date

    May 6, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001270140300140