Spotting the Hook: Leveraging Domain Data for Advanced Phishing Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154679" target="_blank" >RIV/00216305:26230/24:PU154679 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10814617" target="_blank" >https://ieeexplore.ieee.org/document/10814617</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CNSM62983.2024.10814617" target="_blank" >10.23919/CNSM62983.2024.10814617</a>
Alternative languages
Result language
angličtina
Original language name
Spotting the Hook: Leveraging Domain Data for Advanced Phishing Detection
Original language description
Phishing is a major threat, using deceptive tactics to steal sensitive information like passwords and financial details. The rapid innovation by cybercriminals and sophisticated social engineering amplify the challenges in combating phishing campaigns. Traditional blocklisting methods struggle due to the dynamic nature of the Internet and the continuous emergence of new phishing sites. Our research presents an innovative approach to detect phishing domains using machine learning classifiers built upon an extensive array of information combined from DNS records, IP addresses, RDAP servers, TLS certificates, and geolocation data for over 500,000 Internet domains. Using a fine-tailored vector of 143 unique features and seven classification methods, we have achieved a 0.9830 precision rate, an F1 score of 0.9770, and a remarkably low false positive rate of only 0.27%. We further examines the contribution of individual features and the overall impact of information from the utilized data sources on the decision making of the classifiers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 10th International Conference on Network and Service Management (CNSM)
ISBN
978-3-903176-66-9
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
Praha
Event location
Praha
Event date
Oct 28, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—