All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spotting the Hook: Leveraging Domain Data for Advanced Phishing Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154679" target="_blank" >RIV/00216305:26230/24:PU154679 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10814617" target="_blank" >https://ieeexplore.ieee.org/document/10814617</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/CNSM62983.2024.10814617" target="_blank" >10.23919/CNSM62983.2024.10814617</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spotting the Hook: Leveraging Domain Data for Advanced Phishing Detection

  • Original language description

    Phishing is a major threat, using deceptive tactics to steal sensitive information like passwords and financial details. The rapid innovation by cybercriminals and sophisticated social engineering amplify the challenges in combating phishing campaigns. Traditional blocklisting methods struggle due to the dynamic nature of the Internet and the continuous emergence of new phishing sites. Our research presents an innovative approach to detect phishing domains using machine learning classifiers built upon an extensive array of information combined from DNS records, IP addresses, RDAP servers, TLS certificates, and geolocation data for over 500,000 Internet domains. Using a fine-tailored vector of 143 unique features and seven classification methods, we have achieved a 0.9830 precision rate, an F1 score of 0.9770, and a remarkably low false positive rate of only 0.27%. We further examines the contribution of individual features and the overall impact of information from the utilized data sources on the decision making of the classifiers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 10th International Conference on Network and Service Management (CNSM)

  • ISBN

    978-3-903176-66-9

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Praha

  • Event location

    Praha

  • Event date

    Oct 28, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article