All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F17%3APU140597" target="_blank" >RIV/00216305:26310/17:PU140597 - isvavai.cz</a>

  • Result on the web

    <a href="https://aem.asm.org/content/aem/83/2/e02361-16.full.pdf" target="_blank" >https://aem.asm.org/content/aem/83/2/e02361-16.full.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1128/AEM.02361-16" target="_blank" >10.1128/AEM.02361-16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens

  • Original language description

    The alginate-producing bacterium Pseudomonas fluorescens utilizes the Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to metabolize fructose, since the upper part of its Embden-Meyerhof-Parnas pathway is defective. Our previous study indicated that perturbation of the central carbon metabolism by diminishing glucose-6-phosphate dehydrogenase activity could lead to sugar phosphate stress when P. fluorescens was cultivated on fructose. In the present study, we demonstrate that PFLU2693, annotated as a haloacid dehalogenase-like enzyme, is a new sugar phosphate phosphatase, now designated Spp, which is able to dephosphorylate a range of phosphate substrates, including glucose 6-phosphate and fructose 6-phosphate, in vitro. The effect of spp overexpression on growth and alginate production was investigated using both the wild type and several mutant strains. The results obtained suggested that sugar phosphate accumulation caused diminished growth in some of the mutant strains, since this was partially relieved by spp overexpression. On the other hand, overexpression of spp in fructose-grown alginate-producing strains negatively affected both growth and alginate production. The latter implies that Spp dephosphorylates the sugar phosphates, thus depleting the pool of these important metabolites. Deletion of the spp gene did not affect growth of the wildtype strain on fructose, but the gene could not be deleted in the alginate-producing strain. This indicates that Spp is essential for relieving the cells of sugar phosphate stress in P. fluorescens actively producing alginate. IMPORTANCE In enteric bacteria, the sugar phosphate phosphatase YigL is known to play an important role in combating stress caused by sugar phosphate accumulation. In this study, we identified a sugar phosphate phosphatase, designated Spp, in Pseudomonas fluorescens. Spp utilizes glucose 6-phosphate, fructose 6-phosphate, and ribose 5-phosphate as substrates, and overexpression of the gene h

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20802 - Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management

Result continuities

  • Project

    <a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED AND ENVIRONMENTAL MICROBIOLOGY

  • ISSN

    0099-2240

  • e-ISSN

    1098-5336

  • Volume of the periodical

    83

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000393479000008

  • EID of the result in the Scopus database