All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU144369" target="_blank" >RIV/00216305:26310/22:PU144369 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/14/10/1990" target="_blank" >https://www.mdpi.com/2073-4360/14/10/1990</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym14101990" target="_blank" >10.3390/polym14101990</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids

  • Original language description

    A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate-P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Quality internal grants at BUT</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000801304500001

  • EID of the result in the Scopus database