All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU146641" target="_blank" >RIV/00216305:26310/22:PU146641 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14160/22:00128069

  • Result on the web

    <a href="https://doi.org/10.3389/fphar.2022.1068371" target="_blank" >https://doi.org/10.3389/fphar.2022.1068371</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fphar.2022.1068371" target="_blank" >10.3389/fphar.2022.1068371</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing

  • Original language description

    Antimicrobial resistance is a public health threat and the increasing number of multidrug-resistant bacteria is a major concern worldwide. Common antibiotics are becoming ineffective for skin infections and wounds, making the search for new therapeutic options increasingly urgent. The present study aimed to investigate the antibacterial potential of prenylated phenolics in wound healing. Phenolic compounds isolated from the root bark of Morus alba L. were investigated for their antistaphylococcal potential both alone and in combination with commonly used antibiotics. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by microdilution and agar method. Synergy was investigated using the checkerboard titration technique. Membrane-disrupting activity and efflux pump inhibition were evaluated to describe the potentiating effect. Prenylated phenolics inhibited bacterial growth of methicillin-resistant Staphylococcus aureus (MRSA) at lower concentrations (MIC 2–8 μg/ml) than commonly used antibiotics. The combination of active phenolics with kanamycin, oxacillin, and ciprofloxacin resulted in a decrease in the MIC of the antimicrobial agent. Kuwanon C, E, T, morusin, and albafuran C showed synergy (FICi 0.375–0.5) with oxacillin and/or kanamycin. Prenylated phenolics disrupted membrane permeability statistically significantly (from 28 ± 16.48% up to 73 ± 2.83%), and membrane disruption contributes to the complex antibacterial activity against MRSA. In addition, kuwanon C could be considered an efflux pump inhibitor. Despite the antibacterial effect on MRSA and the multiple biological activities, the prenylated phenolics at microbially significant concentrations have a minor effect on human keratinocyte (HaCaT) viability. In conclusion, prenylated phenolics in combination with commonly used antibiotics are promising candidates for the treatment of MRSA infections and wound healing, although further studies are needed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Pharmacology

  • ISSN

    1663-9812

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    30.11.2022

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    „“-„“

  • UT code for WoS article

    000898590100001

  • EID of the result in the Scopus database

    2-s2.0-85144076291