All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against Cutibacterium acnes and Staphylococcus epidermidis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F23%3APU149259" target="_blank" >RIV/00216305:26310/23:PU149259 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/13/5/844" target="_blank" >https://www.mdpi.com/2079-4991/13/5/844</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano13050844" target="_blank" >10.3390/nano13050844</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against Cutibacterium acnes and Staphylococcus epidermidis

  • Original language description

    Acne vulgaris is a prevalent skin condition that is caused by an imbalance in skin microbiomes mainly by the overgrowth of strains such as Cutibacterium acnes and Staphylococcus epidermidis which affect both teenagers and adults. Drug resistance, dosing, mood alteration, and other issues hinder traditional therapy. This study aimed to create a novel dissolvable nanofiber patch containing essential oils (EOs) from Lavandula angustifolia and Mentha piperita for acne vulgaris treatment. The EOs were characterized based on antioxidant activity and chemical composition using HPLC and GC/MS analysis. The antimicrobial activity against C. acnes and S. epidermidis was observed by the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The MICs were in the range of 5.7-9.4 mu L/mL, and MBCs 9.4-25.0 mu L/mL. The EOs were integrated into gelatin nanofibers by electrospinning and SEM images of the fibers were taken. Only the addition of 20% of pure essential oil led to minor diameter and morphology alteration. The agar diffusion tests were performed. Pure and diluted Eos in almond oil exhibited a strong antibacterial effect on C. acnes and S. epidermidis. After incorporation into nanofibers, we were able to focus the antimicrobial effect only on the spot of application with no effect on the surrounding microorganisms. Lastly, for cytotoxicity evaluation, and MTT assay was performed with promising results that samples in the tested range had a low impact on HaCaT cell line viability. In conclusion, our gelatin nanofibers containing EOs are suitable for further investigation as prospective antimicrobial patches for acne vulgaris local treatment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000947604000001

  • EID of the result in the Scopus database

    2-s2.0-85149626179