Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU125591" target="_blank" >RIV/00216305:26620/17:PU125591 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1089/ten.tec.2016.0361" target="_blank" >http://dx.doi.org/10.1089/ten.tec.2016.0361</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1089/ten.tec.2016.0361" target="_blank" >10.1089/ten.tec.2016.0361</a>
Alternative languages
Result language
angličtina
Original language name
Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates
Original language description
This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low-and high-temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30404 - Biomaterials (as related to medical implants, devices, sensors)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Tissue engineering. Part C, Methods.
ISSN
1937-3384
e-ISSN
1937-3392
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
118-124
UT code for WoS article
000394430500006
EID of the result in the Scopus database
—