All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regularized extended estimation with stabilized exponential forgetting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU125709" target="_blank" >RIV/00216305:26620/17:PU125709 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7828031/" target="_blank" >http://ieeexplore.ieee.org/document/7828031/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2017.2656379" target="_blank" >10.1109/TAC.2017.2656379</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regularized extended estimation with stabilized exponential forgetting

  • Original language description

    This technical note concerns the problem of variable regularized estimation of time-varying nonlinear systems from the Bayesian viewpoint. The questions of how to impose the posterior information being variably regularized and how to forget this information are carefully discussed. The estimator design adopts the strategy of the iterated Kalman filter but differs in that, instead of the separated moments of the linearized system, only the augmented covariance matrix is updated. To suppress obsolete information, a decision problem involving the Kullback-Leibler divergence is solved. The decision provides the best combination of a pair of time-evolution model hypotheses in terms of the geometric mean. As a result, exponential forgetting with the adaptively tuned factor is inserted into the estimation process. The regularization of the investigated statistics is induced through the processing of externally supplied information. The presented estimator allows for absolute discarding or, conversely, retention of external information produced in terms of the Normal-Wishart distribution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL

  • ISSN

    0018-9286

  • e-ISSN

    1558-2523

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    6513-6520

  • UT code for WoS article

    000417090000041

  • EID of the result in the Scopus database