Exponential Stability of Linear Discrete Systems with Multiple Delays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128561" target="_blank" >RIV/00216305:26620/18:PU128561 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1155/2018/9703919" target="_blank" >https://doi.org/10.1155/2018/9703919</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2018/9703919" target="_blank" >10.1155/2018/9703919</a>
Alternative languages
Result language
angličtina
Original language name
Exponential Stability of Linear Discrete Systems with Multiple Delays
Original language description
The paper investigates the exponential stability and exponential estimate of the norms of solutions to a linear system of difference equations with single delay $xleft( {k+1} right)=Axleft( k right)+sum_{i=1}^sB_ixleft( {k-m_i} right)$, $k=0,1,dots$ where $sin mathbb{N}$, $A$ and $B_i$ are square matrices and $m_iinmathbb{N}$. New criterion for exponential stability is proved by the Lyapunov method. An estimate of the norm of solutions is given as well and relations to the well-known results are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-08549S" target="_blank" >GA16-08549S: Dynamical Systems Identification on Time Scales</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Dynamics in Nature and Society
ISSN
1026-0226
e-ISSN
1607-887X
Volume of the periodical
2018
Issue of the periodical within the volume
2018
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1-7
UT code for WoS article
000441549800001
EID of the result in the Scopus database
2-s2.0-85051585456