Adaptive fading Kalman filter design using the geometric mean of normal probability densities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU129250" target="_blank" >RIV/00216305:26620/18:PU129250 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/8431008" target="_blank" >https://ieeexplore.ieee.org/document/8431008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/ACC.2018.8431008" target="_blank" >10.23919/ACC.2018.8431008</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive fading Kalman filter design using the geometric mean of normal probability densities
Original language description
The paper extends the Kalman filter to operate with the potential process model uncertainty by relying on the use of a variable fading factor. A loss functional evaluating the prediction step of the Kalman filter is constructed based on Bayesian decision-making. This evaluation results in coupling two normal probability density functions (pdfs), defining a lower and upper bound for a state uncertainty increase. The coupling policy is identical with the geometric mean of pdfs weighted by adaptively adjusted probabilities. In this respect, the fading factor is optimally determined by being treated as a probability assigned to the more conservative pdf. The proposed schema corrects state filtering in the presence of model uncertainty through controlling the Kalman gain matrix in response to observed performance.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2018 Annual American Control Conference
ISBN
978-1-5386-5428-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
5037-5042
Publisher name
IEEE
Place of publication
neuveden
Event location
Milwaukee
Event date
Jun 27, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000591256605019