All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate Bayesian Prediction Using State Space Model with Uniform Noise

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00511101" target="_blank" >RIV/67985556:_____/19:00511101 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-31993-9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-31993-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-31993-9" target="_blank" >10.1007/978-3-030-31993-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate Bayesian Prediction Using State Space Model with Uniform Noise

  • Original language description

    This paper proposes a one-step-ahead Bayesian output predictor for the linear stochastic state space model with uniformly distributed state and output noises. A model with discrete-time inputs,noutputs and states is considered. The model matrices and noise parameters are supposed to be known. Unknown states are estimated using Bayesian approach. A complex polytopic support of posterior probability density function (pdf) is approximated by a parallelotopic set. The state estimation consists of two stages, namely the time and data update including the mentioned approximation. The output prediction is performed as an inter-step between the time update and the data update. The behaviour of the proposed algorithm is illustrated by simulations and compared with Kalman filter.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Informatics in Control, Automation and Robotics : 15th International Conference, ICINCO 2018, Porto, Portugal, July 29-31, 2018, Revised Selected Papers

  • ISBN

    978-3-030-31992-2

  • Number of pages of the result

    17

  • Pages from-to

    552-568

  • Number of pages of the book

    570

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter